99re热视频这里只精品,久久久天堂国产精品女人,国产av一区二区三区,久久久精品成人免费看片,99久久精品免费看国产一区二区三区

PyTorch 對抗示例生成

2025-06-18 17:16 更新

對抗示例是機器學(xué)習(xí)領(lǐng)域中的一個重要研究方向,它揭示了模型在面對惡意攻擊時的脆弱性。本教程教你如何生成對抗示例并攻擊一個圖像分類器。通過學(xué)習(xí) FGSM 攻擊方法,你將深入了解對抗示例的原理和實現(xiàn)方式。

一、對抗示例概述

對抗示例是指通過在輸入數(shù)據(jù)中添加精心設(shè)計的擾動,使機器學(xué)習(xí)模型產(chǎn)生錯誤輸出的樣本。這些擾動通常很小,以至于人類無法察覺,但卻能顯著影響模型的性能。對抗示例的存在提醒我們在開發(fā)機器學(xué)習(xí)模型時,不僅要關(guān)注模型的準(zhǔn)確性,還要重視其安全性和魯棒性。

在實際應(yīng)用中,攻擊者可能對模型有不同的了解程度,這引出了白盒攻擊和黑盒攻擊的概念:

  • 白盒攻擊 :攻擊者完全了解模型的結(jié)構(gòu)、參數(shù)和訓(xùn)練數(shù)據(jù)。
  • 黑盒攻擊 :攻擊者只能訪問模型的輸入和輸出,對模型的內(nèi)部結(jié)構(gòu)和參數(shù)一無所知。

此外,根據(jù)攻擊目標(biāo)的不同,對抗示例可以分為錯誤分類和源 / 目標(biāo)錯誤分類兩種類型。

二、快速梯度符號攻擊(FGSM)

FGSM 是一種簡單而有效的對抗示例生成方法。它的核心思想是利用模型的梯度信息來構(gòu)造對抗擾動。具體來說,F(xiàn)GSM 通過計算損失函數(shù)對輸入數(shù)據(jù)的梯度,然后根據(jù)梯度的方向調(diào)整輸入數(shù)據(jù),使損失最大化,從而生成對抗示例。

FGSM 的公式可以表示為:

[ x_{\text{adv}} = x + \epsilon \cdot \text{sign}(\nabla_x J(\theta, x, y)) ]

其中,(x) 是原始輸入,(\epsilon) 是擾動的幅度,(\text{sign}) 是取符號函數(shù),(\nabla_x J(\theta, x, y)) 是損失函數(shù)對輸入 (x) 的梯度。

三、實驗實現(xiàn)

1. 導(dǎo)入必要的庫和模塊

我們首先導(dǎo)入實現(xiàn)對抗示例生成所需的庫和模塊。

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
import numpy as np
import matplotlib.pyplot as plt

2. 定義受攻擊的模型

我們使用一個預(yù)訓(xùn)練的 MNIST 分類器作為受攻擊的模型。

## LeNet 模型定義
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
        self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
        self.conv2_drop = nn.Dropout2d()
        self.fc1 = nn.Linear(320, 50)
        self.fc2 = nn.Linear(50, 10)


    def forward(self, x):
        x = F.relu(F.max_pool2d(self.conv1(x), 2))
        x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
        x = x.view(-1, 320)
        x = F.relu(self.fc1(x))
        x = F.dropout(x, training=self.training)
        x = self.fc2(x)
        return F.log_softmax(x, dim=1)


## 加載 MNIST 測試數(shù)據(jù)集
test_loader = torch.utils.data.DataLoader(
    datasets.MNIST('../data', train=False, download=True, transform=transforms.Compose([
        transforms.ToTensor(),
    ])),
    batch_size=1, shuffle=True)


## 檢測設(shè)備并初始化模型
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = Net().to(device)


## 加載預(yù)訓(xùn)練模型權(quán)重并設(shè)置為評估模式
model.load_state_dict(torch.load("data/lenet_mnist_model.pth", map_location=device))
model.eval()

3. 定義 FGSM 攻擊函數(shù)

def fgsm_attack(image, epsilon, data_grad):
    # 獲取數(shù)據(jù)梯度的符號
    sign_data_grad = data_grad.sign()
    # 生成對抗示例
    perturbed_image = image + epsilon * sign_data_grad
    # 將對抗示例的像素值限制在 [0, 1] 范圍內(nèi)
    perturbed_image = torch.clamp(perturbed_image, 0, 1)
    return perturbed_image

4. 測試函數(shù)

def test(model, device, test_loader, epsilon):
    correct = 0
    adv_examples = []


    for data, target in test_loader:
        data, target = data.to(device), target.to(device)
        data.requires_grad = True


        output = model(data)
        init_pred = output.max(1, keepdim=True)[1]


        if init_pred.item() != target.item():
            continue


        loss = F.nll_loss(output, target)
        model.zero_grad()
        loss.backward()
        data_grad = data.grad.data


        perturbed_data = fgsm_attack(data, epsilon, data_grad)
        output = model(perturbed_data)


        final_pred = output.max(1, keepdim=True)[1]


        if final_pred.item() == target.item():
            correct += 1
            if epsilon == 0 and len(adv_examples) < 5:
                adv_ex = perturbed_data.squeeze().detach().cpu().numpy()
                adv_examples.append((init_pred.item(), final_pred.item(), adv_ex))
        else:
            if len(adv_examples) < 5:
                adv_ex = perturbed_data.squeeze().detach().cpu().numpy()
                adv_examples.append((init_pred.item(), final_pred.item(), adv_ex))


    final_acc = correct / float(len(test_loader))
    print("Epsilon: {}\tTest Accuracy = {} / {} = {}".format(epsilon, correct, len(test_loader), final_acc))
    return final_acc, adv_examples

5. 運行攻擊并可視化結(jié)果

epsilons = [0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3]
accuracies = []
examples = []


for eps in epsilons:
    acc, ex = test(model, device, test_loader, eps)
    accuracies.append(acc)
    examples.append(ex)


## 繪制精度與 epsilon 的關(guān)系圖
plt.figure(figsize=(5, 5))
plt.plot(epsilons, accuracies, "*-")
plt.yticks(np.arange(0, 1.1, step=0.1))
plt.xticks(np.arange(0, 0.35, step=0.05))
plt.title("Accuracy vs Epsilon")
plt.xlabel("Epsilon")
plt.ylabel("Accuracy")
plt.show()


## 可視化對抗示例
cnt = 0
plt.figure(figsize=(8, 10))
for i in range(len(epsilons)):
    for j in range(len(examples[i])):
        cnt += 1
        plt.subplot(len(epsilons), len(examples[0]), cnt)
        plt.xticks([], [])
        plt.yticks([], [])
        if j == 0:
            plt.ylabel("Eps: {}".format(epsilons[i]), fontsize=14)
        orig, adv, ex = examples[i][j]
        plt.title("{} -> {}".format(orig, adv))
        plt.imshow(ex, cmap="gray")
plt.tight_layout()
plt.show()

四、實驗結(jié)果

通過運行上述代碼,我們可以得到不同 epsilon 值下模型的測試精度以及一些成功的對抗示例。

從精度與 epsilon 的關(guān)系圖中可以看到,隨著 epsilon 的增加,模型的測試精度逐漸下降。這表明對抗示例的擾動對模型的性能產(chǎn)生了顯著影響。

對抗示例的可視化結(jié)果展示了在不同 epsilon 值下,原始圖像被錯誤分類為其他類別的示例。盡管擾動很小,但模型的預(yù)測結(jié)果發(fā)生了變化,而人類仍然能夠正確識別圖像中的數(shù)字。

Epsilon 測試精度
0 0.981
0.05 0.9426
0.1 0.851
0.15 0.6826
0.2 0.4301
0.25 0.2082
0.3 0.0869

五、總結(jié)

本教程介紹了對抗示例的概念和 FGSM 攻擊方法,并通過實驗展示了如何生成對抗示例并攻擊一個 MNIST 分類器。通過學(xué)習(xí)本教程,你了解了對抗示例的原理和實現(xiàn)方式,以及它們對模型性能的影響。在編程獅(W3Cschool)網(wǎng)站上,你可以找到更多關(guān)于 PyTorch 的詳細(xì)教程和實戰(zhàn)案例,幫助你進一步提升深度學(xué)習(xí)技能,成為人工智能領(lǐng)域的編程大神。

以上內(nèi)容是否對您有幫助:
在線筆記
App下載
App下載

掃描二維碼

下載編程獅App

公眾號
微信公眾號

編程獅公眾號